今天给各位分享什么库用于安装管理Python扩展包的知识,其中也会对什么库用于安装管理python扩展包进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
本文目录一览:
- 1、最受欢迎的 15 大 Python 库有哪些
- 2、VS Code中安装python、第三方库
- 3、Python 包管理工具
- 4、python安装扩展库常用什么工具
- 5、什么是目前比较常用的Python扩展库管理工具
- 6、Python 常用的标准库以及第三方库有哪些
最受欢迎的 15 大 Python 库有哪些
1、Pandas:是一个Python包,旨在通过“标记”和“关系”数据进行工作,简单直观。它设计用于快速简单的数据操作、聚合和可视化,是数据整理的完美工具。
2、Numpy:是专门为Python中科学计算而设计的软件集合,它为Python中的n维数组和矩阵的操作提供了大量有用的功能。该库提供了NumPy数组类型的数学运算向量化,可以改善性能,从而加快执行速度。
3、SciPy:是一个工程和科学软件库,包含线性代数,优化,集成和统计的模块。SciPy库的主要功能是建立在NumPy上,通过其特定子模块提供有效的数值例程,并作为数字积分、优化和其他例程。
4、Matplotlib:为轻松生成简单而强大的可视化而量身定制,它使Python成为像MatLab或Mathematica这样的科学工具的竞争对手。
5、Seaborn:主要关注统计模型的可视化(包括热图),Seaborn高度依赖于Matplotlib。
6、Bokeh:独立于Matplotlib,主要焦点是交互性,它通过现代浏览器以数据驱动文档的风格呈现。
7、Plotly:是一个基于Web用于构建可视化的工具箱,提供API给一些编程语言(Python在内)。
8、Scikits:是Scikits
Stack额外的软件包,专为像图像处理和机器学习辅助等特定功能而设计。它建立在SciPy之上,中集成了有质量的代码和良好的文档、简单易用并且十分高效,是使用Python进行机器学习的实际行业标准。
9、Theano:是一个Python软件包,它定义了与NumPy类似的多维数组,以及数学运算和表达式。此库是被编译的,可实现在所有架构上的高效运行。
10、TensorFlow:是数据流图计算的开源库,旨在满足谷歌对训练神经网络的高需求,并且是基于神经网络的机器学习系统DistBelief的继任者,可以在大型数据集上快速训练神经网络。
11、Keras:是一个用Python编写的开源的库,用于在高层的接口上构建神经网络。它简单易懂,具有高级可扩展性。
12、NLTK:主要用于符号学和统计学自然语言处理(NLP) 的常见任务,旨在促进NLP及相关领域(语言学,认知科学人工智能等)的教学和研究。
13、Gensim:是一个用于Python的开源库,为有向量空间模型和主题模型的工作提供了使用工具。这个库是为了高效处理大量文本而设计,不仅可以进行内存处理,还可以通过广泛使用NumPy数据结构和SciPy操作来获得更高的效率。
…………
VS Code中安装python、第三方库
Python: 译为“蟒蛇”、拥有者PSF、开发者Guido、 主流版本:Python 3、 理念:开源、开放
安装python :点击extensions,输入“python”,点击install进行安装
安装第三方库 :以安装NumPy库为例(NumPy(Numerical Python) 是 Python 语言的一个扩展程序库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库)
pip是python的包管理工具
第一次在终端中输入 pip install numpy,报错command not found
第二次用pip3 install numpy安装成功。
原因是pip和pip3版本不同
查看已安装的第三方库 :pip3 list
Python 包管理工具
Python之所以受欢迎不光是因为它简单易学,更重要的是它有成千上万的宝藏库。这些库相当于是已经集成好的工具,只要安装就能在Python里使用。它们可以处理各式各样的问题,无需你再造轮子,而且随着社区的不断更新维护,有些库越来越强大,几乎能媲美企业级应用。那么这些工具库怎么下载安装呢?它们被放在一个统一的“仓库”里,名叫PyPi(Python Package Index),所有的库安装都是从这里调度。有了仓库之后,还需要有管理员,pip就是这样一个角色。
pip 是 Python 中的标准库管理器,这意味着它是一个工具,用它可以来管理 Python 标准库中其他的包,允许你安装和管理不属于 Python 标准库的其它软件包,其提供了对 Python 包的查找、下载、安装、卸载等功能。总的来说,pip的Python第三方库的大管家,搞懂它,会让你省很多事。从Python 3 = Python 3.4 、Python2 = Python2.7.9 版本开始,pip默认包含在Python的安装程序中,在安装Python时将会自动被安装,省事方便。
Python 的安装器中自带了 pip,所以你可以直接使用它,除非你安装的是更早版本的 Python。你可以通过以下命令来判断是否已安装:
如果你的 Python 环境没有安装 pip,则可以使用以下方法来手动安装。pip 安装文件下载: pypi.org/project/pip…
pip提供的命令不多,但是都很实用
pip命令默认使用的是国外的pypi镜像(pypi.python.org),安装慢不说,有时甚至会导致出现超时等网络问题,有时候为了安装一个包,失败重试安装好几次都不一定成功。所以,使用国内的pypi镜像,亦即 切换 pip 源 ,这样速度上更有保证,不失为一种加速pip安装第三方包的好方法。常用的镜像站有阿里云、清华大学等。其中清华大学开源软件镜像站是每 5 分钟同步一次的,比较推荐使用。阿里云镜像站的速度也非常快,这也是我现在在使用的。
切换切换 pip 源可以是临时性的,也可以设置为默认。临时性的,就是在安装包时,通过pip命令的 -i 选项指定镜像源即可。例如,临时使用阿里云镜像站作为 pip 源,可以是这样安装:
如果每次安装时都想要通过镜像源来安装,上面的办法不免有些麻烦。我们可以修改pip的配置文件,将镜像源写入到 pip 配置文件中。 对于linux系统 ,修改 ~/.pip/pip.conf 文件 (没有就创建一个文件夹及文件,文件夹要加“.”,表示是隐藏文件夹):
然后在文件中保存如下内容:
对于windows系统 ,在C:Users文件夹下的用户目录(例如如果当前用户是Administrator则是C:UsersAdministrator)下创建pip文件夹,然后再在此文件夹下创建pip.ini文件,在文件中写入一下内容:
配置完成后再通过 pip config list 查看pip配置。
我们经常会遇到这样的开发需求,比如你手头有多个开发项目,其中项目A要求用python3.7,项目B需要用python3.6,有要求项目A和项目B依赖包相互独立,互不干扰。为了满足这样的开发需求,我们需要在自己的电脑上安装多个Python版本,并且项目之间进行环境隔离。因此,我们要想运行这些项目,在工作电脑上就要安装不同版本的Python。 pyenv 是Python版本管理工具,通过系统修改环境变量来实现Python不同版本的切换,利用它可以在同一台电脑上安装多个版本的Python,设置目录级别的Python,还能创建和管理vitual python enviroments。而且所有的设置都是用户级别的操作,不需要sudo命令。
首先安装pyenv,如果你是Mac电脑,那么推荐使用Homebrew来安装。
要想升级pyenv,则可以执行:
pyenv安装完成后,需要将$HOME/.pyenv/bin添加到PATH变量前面,这一步非常关键。
也可以采用手动安装的方式,将pyenv检出到你想安装的目录。
添加环境变量,将PYENV_ROOT 指向 pyenv 检出的根目录,并向 $PATH 添加 $PYENV_ROOT/bin 以提供访问 pyenv命令的路径。这里的 shell 配置文件(~/.bash_profile)依不同系统而需作修改,如果使用 Zsh 则需要相应的配置 ~/.zshrc
在使用 pyenv 之后使用 pip 安装的第三方模块会自动安装到当前使用 python 版本下,不会和系统模块产生冲突。使用 pip 安装模块之后,如果没有生效,记得使用 pyenv rehash 来更新。
安装完pyenv,可以安装Python,首先查看可安装的Python版本:pyenv install -l,接下来开始安装Python
执行命令 pyenv versions 查看安装结果。
可以看到,已经成功安装了Python,安装的位置在 /Users/dllwh/.pyenv。
可以看到,3.9.9 前面有一个星号,说明成功切换到了 3.9.9 版本,可以执行一下python来验证。
Pipenv 是 Python 官方推荐的包管理工具,它综合了 virtualenv、pip 和 pyenv 三者的功能,你可以使用 pipenv 这一个工具来安装、卸载、跟踪和记录依赖性,并创建、使用和组织你的虚拟环境。
如果你是Mac电脑,那么推荐使用Homebrew来安装和升级pipenv:
也可以通过pip来安装和升级pipenv:
进入到项目目录中,通过下面的指令为项目创建虚拟环境。
上面的操作,给pipenv_demo这个项目初始化了一个 Python 3.9.9 的虚拟环境,并在项目录下生成一个项目依赖包文件 Pipefile。如果系统中没有 3.9.8 版本的Python,pipenv 会调用 pyenv 来安装对应的 Python 的版本。默认地,虚拟环境会创建在 ~/.local/share/virtualenvs目录里面。我们也可以通过 pipenv --venv查看项目的虚拟环境目录。可以通过 pipenv --rm 删除虚拟环境。
如果想更改虚拟环境的目录,可以在 .bashrc 或 .bash_profile 中,设置环境变量WORKON_HOME,指定虚拟环境的目录所在位置,比如想将虚拟环境放到~/.venvs目录,则可以执行下面的命令。
如果希望在项目目录下创建虚拟环境目录(.venv),需要在 .bashrc 或 .bash_profile 中配置环境变量PIPENV_VENV_IN_PROJECT:
pipenv使用 Pipfile 和 Pipfile.lock 来管理依赖包,并且在使用pipenv添加或删除包时,自动维护 Pipfile 文件,同时生成 Pipfile.lock 来锁定安装包的版本和依赖信息。相比pip需要手动维护requirements.txt 中的安装包和版本,具有很大的进步。
为项目安装依赖包到虚拟环境中,使每个项目拥有相互独立的依赖包,是非常不错的Python的开发实践。安装依赖包到虚拟环境中的方法:
执行完上面的命令后,检查一下是否安装成功:
观察项目的根目录下,又多了一个 Pipfile.lock 文件。这两个文件记录了此项目的依赖包,这两个文件的区别是 Pipfile 中安装的包不包含包的具体版本号,而Pipfile.lock 是包含包的具体的版本号的。如果不想产生 Pipfile.lock 文件,在安装依赖包的时候,加上 –skip-lock 选项即可。
在使用pipenv的时候,常常会安装过程比较慢,这个是因为pipenv创建的 Pipfile 中默认的Pypi源是python官方的 pypi.python.org/simple。我们国内…
为了避免每次都要指定–pypi-mirror,我一般会在创建好Pipfile以后,将文件中 source 块下的 url 字段,设置为国内的 pypi 源,我推荐的是清华的Pypi源或者阿里源,具体设置如下:
如果是要删除虚拟环境中的第三方包,执行:
用git管理项目时候,要把Pipfile和Pipfile.lock加入版本跟踪。这样clone了这个项目的同学,只需要执行:
就可以安装所有的Pipfile中 [packages]部分列出来的包了,并且自动为项目在自己电脑上创建了虚拟环境。
上面的方法都是安装Pipfile中列出来的第三方包的最新版本,如果是想安装Pipfile.lock中固定版本的第三方依赖包,需要执行:
如果项目之前使用requirements.txt来管理依赖的,那么使用pipenv安装所有依赖可以采用类似pip的方法:
虚拟环境创建好了之后,就可以在里面进行开发了。如果在命令行下开发,则在项目目录下执行 pipenv shell ,就进入到了虚拟环境中,在这个环境中,已经包含安装过的所有依赖包了,接下来就可以利用这些依赖包进行开发工作了。如果是用Pycharm进行开发,就更简单了,直接用Pycharm打开项目即可。可以从Pycharm中的左侧导航栏里面看到External Libraries显示的是虚拟环境中的Python解释器了。
在虚拟环境中执行开发好的程序,有两种方式,一种是前面提到的先执行pipenv shell进入到虚拟环境后,再执行python程序;另一种方式,则是执行pyenv run,比如在虚拟环境中执行基于pytest框架编写的测试用例,只需要执行下面的命令即可:
作者:独泪了无痕
链接:
python安装扩展库常用什么工具
python安装扩展库常用的工具是pip和conda。
pip是Python包管理工具,该工具提供了对Python包的查找、下载、安装、卸载功能。conda需要安装Python集成开发环境Anaconda3之后才可以使用。
Python是一种广泛使用的解释型、高级和通用的编程语言。Python由荷兰数学和计算机科学研究学会的GuidovanRossum创造,第一版发布于1991年,它是ABC语言的后继者,也可以视之为一种使用传统中缀表达式的LISP方言。
什么是目前比较常用的Python扩展库管理工具
这个网站左上角有documentation链接的,点进去看看。
像exe,msi如果别人已经编译过了就看不到源码了,说明作者并不希望你看到源码。第三方库开源软件比较多,有网页论坛可以找,所以直接进模块目录就可以看到源码。
元格中输入公式:=RIGHT(A,),确认后即显示
Python 常用的标准库以及第三方库有哪些
推荐5个常用的Python标准库:
1、os:提供了不少与操作系统相关联的函数库
os包是Python与操作系统的接口。我们可以用os包来实现操作系统的许多功能,比如管理系统进程,改变当前路径,改变文件权限等。但要注意,os包是建立在操作系统的平台上的,许多功能在Windows系统上是无法实现的。另外,在使用os包中,要注意其中的有些功能已经被其他的包取代。
我们通过文件系统来管理磁盘上储存的文件。查找、删除、复制文件以及列出文件列表等都是常见的文件操作。这些功能通常可以在操作系统中看到,但现在可以通过Python标准库中的glob包、shutil包、os.path包以及os包的一些函数等,在Python内部实现。
2、sys:通常用于命令行参数的库
sys包被用于管理Python自身的运行环境。Python是一个解释器,也是一个运行在操作系统上的程序。我们可以用sys包来控制这一程序运行的许多参数,比如说Python运行所能占据的内存和CPU,Python所要扫描的路径等。另一个重要功能是和Python自己的命令行互动,从命令行读取命令和参数。
3、random:用于生成随机数的库
Python标准库中的random函数,可以生成随机浮点数、整数、字符串,甚至帮助你随机选择列表序列中的一个元素,打乱一组数据等。
4、math:提供了数学常数和数学函数
标准库中,Python定义了一些新的数字类型,以弥补之前的数字类型可能的不足。标准库还包含了random包,用于处理随机数相关的功能。math包补充了一些重要的数学常数和数学函数,比如pi、三角函数等等。
5、datetime:日期和时间的操作库
日期和时间的管理并不复杂,但容易犯错。Python的标准库中对日期和时间的管理颇为完善,你不仅可以进行日期时间的查询和变换,还可以对日期时间进行运算。通过这些标准库,还可以根据需要控制日期时间输出的文本格式
什么库用于安装管理Python扩展包的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于什么库用于安装管理python扩展包、什么库用于安装管理Python扩展包的信息别忘了在本站进行查找喔。
2、本站永久网址:https://www.yuanmacun.com
3、本网站的文章部分内容可能来源于网络,仅供大家学习与参考,如有侵权,请联系站长进行删除处理。
4、本站一切资源不代表本站立场,并不代表本站赞同其观点和对其真实性负责。
5、本站一律禁止以任何方式发布或转载任何违法的相关信息,访客发现请向站长举报
6、本站资源大多存储在云盘,如发现链接失效,请联系我们我们会第一时间更新。
源码村资源网 » 什么库用于安装管理Python扩展包(什么库用于安装管理python扩展包)
1 评论