linux内核源码逐句讲解(深入分析linux内核源代码)

今天给各位分享linux内核源码逐句讲解的知识,其中也会对深入分析linux内核源代码进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文目录一览:

如何查看 linux 内核源代码

Linux的内核源代码可以从很多途径得到。一般来讲,在安装的linux系统下,/usr/src/linux目录下的东西就是内核源代码。

对于源代码的阅读,要想比较顺利,事先最好对源代码的知识背景有一定的了解。对于linux内核源代码来讲,我认为,基本要求是:1、操作系统的基本知识;2、对C语言比较熟悉,最好要有汇编语言的知识和GNU C对标准C的扩展的知识的了解。另外在阅读之前,还应该知道Linux内核源代码的整体分布情况。我们知道现代的操作系统一般由进程管理、内存管理、文件系统、驱动程序、网络等组成。看一下Linux内核源代码就可看出,各个目录大致对应了这些方面。Linux内核源代码的组成如下(假设相对于linux目录):

arch 这个子目录包含了此核心源代码所支持的硬件体系结构相关的核心代码。如对于X86平台就是i386。

include 这个目录包括了核心的大多数include文件。另外对于每种支持的体系结构分别有一个子目录。

init 此目录包含核心启动代码。

mm 此目录包含了所有的内存管理代码。与具体硬件体系结构相关的内存管理代码位于arch/*/mm目录下,如对应于X86的就是arch/i386/mm/fault.c 。

drivers 系统中所有的设备驱动都位于此目录中。它又进一步划分成几类设备驱动,每一种也有对应的子目录,如声卡的驱动对应于drivers/sound。

ipc 此目录包含了核心的进程间通讯代码。

modules 此目录包含已建好可动态加载的模块。

fs Linux支持的文件系统代码。不同的文件系统有不同的子目录对应,如ext2文件系统对应的就是ext2子目录。

kernel 主要核心代码。同时与处理器结构相关代码都放在arch/*/kernel目录下。

net 核心的网络部分代码。里面的每个子目录对应于网络的一个方面。

lib 此目录包含了核心的库代码。与处理器结构相关库代码被放在arch/*/lib/目录下。

scripts此目录包含用于配置核心的脚本文件。

Documentation 此目录是一些文档,起参考作用。

俗话说:“工欲善其事,必先利其器”。 阅读象Linux核心代码这样的复杂程序令人望而生畏。它象一个越滚越大的雪球,阅读核心某个部分经常要用到好几个其他的相关文件,不久你将会忘记你原来在干什么。所以没有一个好的工具是不行的。由于大部分爱好者对于Window平台比较熟悉,并且还是常用Window系列平台,所以在此我介绍一个Window下的一个工具软件:Source Insight。这是一个有30天免费期的软件,可以从下载。安装非常简单,和别的安装一样,双击安装文件名,然后按提示进行就可以了。安装完成后,就可启动该程序。这个软件使用起来非常简单,是一个阅读源代码的好工具。它的使用简单介绍如下:先选择Project菜单下的new,新建一个工程,输入工程名,接着要求你把欲读的源代码加入(可以整个目录加)后,该软件就分析你所加的源代码。分析完后,就可以进行阅读了。对于打开的阅读文件,如果想看某一变量的定义,先把光标定位于该变量,然后点击工具条上的相应选项,该变量的定义就显示出来。对于函数的定义与实现也可以同样操作。别的功能在这里就不说了,有兴趣的朋友可以装一个Source Insight,那样你阅读源代码的效率会有很大提高的。怎么样,试试吧!

linux内核~~?

用gcc编译一下,就成了内核镜像了

开机时要把镜像加载进内存

在加上些软件,就是一个比较完整的linux了

内核源码书:

linux内核完全注释(0.11/0.12内核)

linux内核源代码情景分析(2.4内核)

要弄明白内核结构,多研究研究Makefile文件

linux内核源码逐句讲解(深入分析linux内核源代码),linux内核源码逐句讲解,信息,视频,源码,第1张

linux编译内核步骤

一、准备工作

a) 首先,你要有一台PC(这不废话么^_^),装好了Linux。

b) 安装好GCC(这个指的是host gcc,用于编译生成运行于pc机程序的)、make、ncurses等工具。

c) 下载一份纯净的Linux内核源码包,并解压好。

注意,如果你是为当前PC机编译内核,最好使用相应的Linux发行版的源码包。

不过这应该也不是必须的,因为我在我的Fedora 13上(其自带的内核版本是2.6.33.3),就下载了一个标准的内核linux-2.6.32.65.tar.xz,并且顺利的编译安装成功了,上电重启都OK的。不过,我使用的.config配置文件,是Fedora 13自带内核的配置文件,即/lib/modules/`uname -r`/build/.config

d) 如果你是移植Linux到嵌入式系统,则还要再下载安装交叉编译工具链。

例如,你的目标单板CPU可能是arm或mips等cpu,则安装相应的交叉编译工具链。安装后,需要将工具链路径添加到PATH环境变量中。例如,你安装的是arm工具链,那么你在shell中执行类似如下的命令,假如有类似的输出,就说明安装好了。

[root@localhost linux-2.6.33.i686]# arm-linux-gcc --version

arm-linux-gcc (Buildroot 2010.11) 4.3.5

Copyright (C) 2008 Free Software Foundation, Inc.

This is free software; see the source for copying conditions. There is NO

warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

注:arm的工具链,可以从这里下载:回复“ARM”即可查看。

二、设置编译目标

在配置或编译内核之前,首先要确定目标CPU架构,以及编译时采用什么工具链。这是最最基础的信息,首先要确定的。

如果你是为当前使用的PC机编译内核,则无须设置。

否则的话,就要明确设置。

这里以arm为例,来说明。

有两种设置方法():

a) 修改Makefile

打开内核源码根目录下的Makefile,修改如下两个Makefile变量并保存。

ARCH := arm

CROSS_COMPILE := arm-linux-

注意,这里cross_compile的设置,是假定所用的交叉工具链的gcc程序名称为arm-linux-gcc。如果实际使用的gcc名称是some-thing-else-gcc,则这里照葫芦画瓢填some-thing-else-即可。总之,要省去名称中最后的gcc那3个字母。

b) 每次执行make命令时,都通过命令行参数传入这些信息。

这其实是通过make工具的命令行参数指定变量的值。

例如

配置内核时时,使用

make ARCH=arm CROSS_COMPILE=arm-linux- menuconfig

编译内核时使用

make ARCH=arm CROSS_COMPILE=arm-linux-

注意,实际上,对于编译PC机内核的情况,虽然用户没有明确设置,但并不是这两项没有配置。因为如果用户没有设置这两项,内核源码顶层Makefile(位于源码根目录下)会通过如下方式生成这两个变量的值。

SUBARCH := $(shell uname -m | sed -e s/i.86/i386/ -e s/sun4u/sparc64/ \

-e s/arm.*/arm/ -e s/sa110/arm/ \

-e s/s390x/s390/ -e s/parisc64/parisc/ \

-e s/ppc.*/powerpc/ -e s/mips.*/mips/ \

-e s/sh[234].*/sh/ )

ARCH?= $(SUBARCH)

CROSS_COMPILE ?=

经过上面的代码,ARCH变成了PC编译机的arch,即SUBARCH。因此,如果PC机上uname -m输出的是ix86,则ARCH的值就成了i386。

而CROSS_COMPILE的值,如果没配置,则为空字符串。这样一来所使用的工具链程序的名称,就不再有类似arm-linux-这样的前缀,就相当于使用了PC机上的gcc。

最后再多说两句,ARCH的值还需要再进一步做泛化。因为内核源码的arch目录下,不存在i386这个目录,也没有sparc64这样的目录。

因此顶层makefile中又构造了一个SRCARCH变量,通过如下代码,生成他的值。这样一来,SRCARCH变量,才最终匹配到内核源码arch目录中的某一个架构名。

SRCARCH := $(ARCH)

ifeq ($(ARCH),i386)

SRCARCH := x86

endif

ifeq ($(ARCH),x86_64)

SRCARCH := x86

endif

ifeq ($(ARCH),sparc64)

SRCARCH := sparc

endif

ifeq ($(ARCH),sh64)

SRCARCH := sh

endif

三、配置内核

内核的功能那么多,我们需要哪些部分,每个部分编译成什么形式(编进内核还是编成模块),每个部分的工作参数如何,这些都是可以配置的。因此,在开始编译之前,我们需要构建出一份配置清单,放到内核源码根目录下,命名为.config文件,然后根据此.config文件,编译出我们需要的内核。

但是,内核的配置项太多了,一个一个配,太麻烦了。而且,不同的CPU架构,所能配置的配置项集合,是不一样的。例如,某种CPU的某个功能特性要不要支持的配置项,就是与CPU架构有关的配置项。所以,内核提供了一种简单的配置方法。

以arm为例,具体做法如下。

a) 根据我们的目标CPU架构,从内核源码arch/arm/configs目录下,找一个与目标系统最接近的配置文件(例如s3c2410_defconfig),拷贝到内核源码根目录下,命名为.config。

注意,如果你是为当前PC机编译内核,最好拷贝如下文件到内核源码根目录下,做为初始配置文件。这个文件,是PC机当前运行的内核编译时使用的配置文件。

/lib/modules/`uname -r`/build/.config

这里顺便多说两句,PC机内核的配置文件,选择的功能真是多。不编不知道,一编才知道。Linux发行方这样做的目的,可能是想让所发行的Linux能够满足用户的各种需求吧。

b) 执行make menuconfig对此配置做一些需要的修改,退出时选择保存,就将新的配置更新到.config文件中了。

如何查看linux系统源码

一般在Linux系统中的/usr/src/linux*.*.*(*.*.*代表的是内核版本,如2.4.23)目录下就是内核源代码(如果没有类似目录,是因为还没安装内核代码)。另外还可从互连网上免费下载。注意,不要总到去下载,最好使用它的镜像站点下载。请在里找一个合适的下载点,再到pub/linux/kernel/v2.6/目录下去下载2.4.23内核。

代码目录结构

在阅读源码之前,还应知道Linux内核源码的整体分布情况。现代的操作系统一般由进程管理、内存管理、文件系统、驱动程序和网络等组成。Linux内核源码的各个目录大致与此相对应,其组成如下(假设相对于Linux-2.4.23目录):

1.arch目录包括了所有和体系结构相关的核心代码。它下面的每一个子目录都代表一种Linux支持的体系结构,例如i386就是Intel CPU及与之相兼容体系结构的子目录。PC机一般都基于此目录。

2.include目录包括编译核心所需要的大部分头文件,例如与平台无关的头文件在include/linux子目录下。

3.init目录包含核心的初始化代码(不是系统的引导代码),有main.c和Version.c两个文件。这是研究核心如何工作的好起点。

4.mm目录包含了所有的内存管理代码。与具体硬件体系结构相关的内存管理代码位于arch/*/mm目录下。

5.drivers目录中是系统中所有的设备驱动程序。它又进一步划分成几类设备驱动,每一种有对应的子目录,如声卡的驱动对应于drivers/sound。

6.ipc目录包含了核心进程间的通信代码。

7.modules目录存放了已建好的、可动态加载的模块。

8.fs目录存放Linux支持的文件系统代码。不同的文件系统有不同的子目录对应,如ext3文件系统对应的就是ext3子目录。

Kernel内核管理的核心代码放在这里。同时与处理器结构相关代码都放在arch/*/kernel目录下。

9.net目录里是核心的网络部分代码,其每个子目录对应于网络的一个方面。

10.lib目录包含了核心的库代码,不过与处理器结构相关的库代码被放在arch/*/lib/目录下。

11.scripts目录包含用于配置核心的脚本文件。

12.documentation目录下是一些文档,是对每个目录作用的具体说明。

一般在每个目录下都有一个.depend文件和一个Makefile文件。这两个文件都是编译时使用的辅助文件。仔细阅读这两个文件对弄清各个文件之间的联系和依托关系很有帮助。另外有的目录下还有Readme文件,它是对该目录下文件的一些说明,同样有利于对内核源码的理解。

在阅读方法或顺序上,有纵向与横向之分。所谓纵向就是顺着程序的执行顺序逐步进行;所谓横向,就是按模块进行。它们经常结合在一起进行。对于Linux启动的代码可顺着Linux的启动顺序一步步来阅读;对于像内存管理部分,可以单独拿出来进行阅读分析。实际上这是一个反复的过程,不可能读一遍就理解。

面试必问的epoll技术,从内核源码出发彻底搞懂epoll

epoll是linux中IO多路复用的一种机制,I/O多路复用就是通过一种机制,一个进程可以监视多个描述符,一旦某个描述符就绪(一般是读就绪或者写就绪),能够通知程序进行相应的读写操作。当然linux中IO多路复用不仅仅是epoll,其他多路复用机制还有select、poll,但是接下来介绍epoll的内核实现。

events可以是以下几个宏的集合:

epoll相比select/poll的优势 :

epoll相关的内核代码在fs/eventpoll.c文件中,下面分别分析epoll_create、epoll_ctl和epoll_wait三个函数在内核中的实现,分析所用linux内核源码为4.1.2版本。

epoll_create用于创建一个epoll的句柄,其在内核的系统实现如下:

sys_epoll_create:

可见,我们在调用epoll_create时,传入的size参数,仅仅是用来判断是否小于等于0,之后再也没有其他用处。

整个函数就3行代码,真正的工作还是放在sys_epoll_create1函数中。

sys_epoll_create - sys_epoll_create1:

sys_epoll_create1 函数流程如下:

sys_epoll_create - sys_epoll_create1 - ep_alloc:

sys_epoll_create - sys_epoll_create1 - ep_alloc - get_unused_fd_flags:

linux内核中,current是个宏,返回的是一个task_struct结构(我们称之为进程描述符)的变量,表示的是当前进程,进程打开的文件资源保存在进程描述符的files成员里面,所以current-files返回的当前进程打开的文件资源。rlimit(RLIMIT_NOFILE) 函数获取的是当前进程可以打开的最大文件描述符数,这个值可以设置,默认是1024。

相关视频推荐:

支撑亿级io的底层基石 epoll实战揭秘

网络原理tcp/udp,网络编程epoll/reactor,面试中正经“八股文”

学习地址:C/C++Linux服务器开发/后台架构师【零声教育】-学习视频教程-腾讯课堂

需要更多C/C++ Linux服务器架构师学习资料加群 812855908 获取(资料包括C/C++,Linux,golang技术,Nginx,ZeroMQ,MySQL,Redis,fastdfs,MongoDB,ZK,流媒体,CDN,P2P,K8S,Docker,TCP/IP,协程,DPDK,ffmpeg等),免费分享

__alloc_fd的工作是为进程在[start,end)之间(备注:这里start为0, end为进程可以打开的最大文件描述符数)分配一个可用的文件描述符,这里就不继续深入下去了,代码如下:

sys_epoll_create - sys_epoll_create1 - ep_alloc - get_unused_fd_flags - __alloc_fd:

然后,epoll_create1会调用anon_inode_getfile,创建一个file结构,如下:

sys_epoll_create - sys_epoll_create1 - anon_inode_getfile:

anon_inode_getfile函数中首先会alloc一个file结构和一个dentry结构,然后将该file结构与一个匿名inode节点anon_inode_inode挂钩在一起,这里要注意的是,在调用anon_inode_getfile函数申请file结构时,传入了前面申请的eventpoll结构的ep变量,申请的file-private_data会指向这个ep变量,同时,在anon_inode_getfile函数返回来后,ep-file会指向该函数申请的file结构变量。

简要说一下file/dentry/inode,当进程打开一个文件时,内核就会为该进程分配一个file结构,表示打开的文件在进程的上下文,然后应用程序会通过一个int类型的文件描述符来访问这个结构,实际上内核的进程里面维护一个file结构的数组,而文件描述符就是相应的file结构在数组中的下标。

dentry结构(称之为“目录项”)记录着文件的各种属性,比如文件名、访问权限等,每个文件都只有一个dentry结构,然后一个进程可以多次打开一个文件,多个进程也可以打开同一个文件,这些情况,内核都会申请多个file结构,建立多个文件上下文。但是,对同一个文件来说,无论打开多少次,内核只会为该文件分配一个dentry。所以,file结构与dentry结构的关系是多对一的。

同时,每个文件除了有一个dentry目录项结构外,还有一个索引节点inode结构,里面记录文件在存储介质上的位置和分布等信息,每个文件在内核中只分配一个inode。 dentry与inode描述的目标是不同的,一个文件可能会有好几个文件名(比如链接文件),通过不同文件名访问同一个文件的权限也可能不同。dentry文件所代表的是逻辑意义上的文件,记录的是其逻辑上的属性,而inode结构所代表的是其物理意义上的文件,记录的是其物理上的属性。dentry与inode结构的关系是多对一的关系。

sys_epoll_create - sys_epoll_create1 - fd_install:

总结epoll_create函数所做的事:调用epoll_create后,在内核中分配一个eventpoll结构和代表epoll文件的file结构,并且将这两个结构关联在一块,同时,返回一个也与file结构相关联的epoll文件描述符fd。当应用程序操作epoll时,需要传入一个epoll文件描述符fd,内核根据这个fd,找到epoll的file结构,然后通过file,获取之前epoll_create申请eventpoll结构变量,epoll相关的重要信息都存储在这个结构里面。接下来,所有epoll接口函数的操作,都是在eventpoll结构变量上进行的。

所以,epoll_create的作用就是为进程在内核中建立一个从epoll文件描述符到eventpoll结构变量的通道。

epoll_ctl接口的作用是添加/修改/删除文件的监听事件,内核代码如下:

sys_epoll_ctl:

根据前面对epoll_ctl接口的介绍,op是对epoll操作的动作(添加/修改/删除事件),ep_op_has_event(op)判断是否不是删除操作,如果op != EPOLL_CTL_DEL为true,则需要调用copy_from_user函数将用户空间传过来的event事件拷贝到内核的epds变量中。因为,只有删除操作,内核不需要使用进程传入的event事件。

接着连续调用两次fdget分别获取epoll文件和被监听文件(以下称为目标文件)的file结构变量(备注:该函数返回fd结构变量,fd结构包含file结构)。

接下来就是对参数的一些检查,出现如下情况,就可以认为传入的参数有问题,直接返回出错:

当然下面还有一些关于操作动作如果是添加操作的判断,这里不做解释,比较简单,自行阅读。

在ep里面,维护着一个红黑树,每次添加注册事件时,都会申请一个epitem结构的变量表示事件的监听项,然后插入ep的红黑树里面。在epoll_ctl里面,会调用ep_find函数从ep的红黑树里面查找目标文件表示的监听项,返回的监听项可能为空。

接下来switch这块区域的代码就是整个epoll_ctl函数的核心,对op进行switch出来的有添加(EPOLL_CTL_ADD)、删除(EPOLL_CTL_DEL)和修改(EPOLL_CTL_MOD)三种情况,这里我以添加为例讲解,其他两种情况类似,知道了如何添加监听事件,其他删除和修改监听事件都可以举一反三。

为目标文件添加监控事件时,首先要保证当前ep里面还没有对该目标文件进行监听,如果存在(epi不为空),就返回-EEXIST错误。否则说明参数正常,然后先默认设置对目标文件的POLLERR和POLLHUP监听事件,然后调用ep_insert函数,将对目标文件的监听事件插入到ep维护的红黑树里面:

sys_epoll_ctl - ep_insert:

前面说过,对目标文件的监听是由一个epitem结构的监听项变量维护的,所以在ep_insert函数里面,首先调用kmem_cache_alloc函数,从slab分配器里面分配一个epitem结构监听项,然后对该结构进行初始化,这里也没有什么好说的。我们接下来看ep_item_poll这个函数调用:

sys_epoll_ctl - ep_insert - ep_item_poll:

ep_item_poll函数里面,调用目标文件的poll函数,这个函数针对不同的目标文件而指向不同的函数,如果目标文件为套接字的话,这个poll就指向sock_poll,而如果目标文件为tcp套接字来说,这个poll就是tcp_poll函数。虽然poll指向的函数可能会不同,但是其作用都是一样的,就是获取目标文件当前产生的事件位,并且将监听项绑定到目标文件的poll钩子里面(最重要的是注册ep_ptable_queue_proc这个poll callback回调函数),这步操作完成后,以后目标文件产生事件就会调用ep_ptable_queue_proc回调函数。

接下来,调用list_add_tail_rcu将当前监听项添加到目标文件的f_ep_links链表里面,该链表是目标文件的epoll钩子链表,所有对该目标文件进行监听的监听项都会加入到该链表里面。

然后就是调用ep_rbtree_insert,将epi监听项添加到ep维护的红黑树里面,这里不做解释,代码如下:

sys_epoll_ctl - ep_insert - ep_rbtree_insert:

前面提到,ep_insert有调用ep_item_poll去获取目标文件产生的事件位,在调用epoll_ctl前这段时间,可能会产生相关进程需要监听的事件,如果有监听的事件产生,(revents event-events 为 true),并且目标文件相关的监听项没有链接到ep的准备链表rdlist里面的话,就将该监听项添加到ep的rdlist准备链表里面,rdlist链接的是该epoll描述符监听的所有已经就绪的目标文件的监听项。并且,如果有任务在等待产生事件时,就调用wake_up_locked函数唤醒所有正在等待的任务,处理相应的事件。当进程调用epoll_wait时,该进程就出现在ep的wq等待队列里面。接下来讲解epoll_wait函数。

总结epoll_ctl函数:该函数根据监听的事件,为目标文件申请一个监听项,并将该监听项挂人到eventpoll结构的红黑树里面。

epoll_wait等待事件的产生,内核代码如下:

sys_epoll_wait:

首先是对进程传进来的一些参数的检查:

参数全部检查合格后,接下来就调用ep_poll函数进行真正的处理:

sys_epoll_wait - ep_poll:

ep_poll中首先是对等待时间的处理,timeout超时时间以ms为单位,timeout大于0,说明等待timeout时间后超时,如果timeout等于0,函数不阻塞,直接返回,小于0的情况,是永久阻塞,直到有事件产生才返回。

当没有事件产生时((!ep_events_available(ep))为true),调用__add_wait_queue_exclusive函数将当前进程加入到ep-wq等待队列里面,然后在一个无限for循环里面,首先调用set_current_state(TASK_INTERRUPTIBLE),将当前进程设置为可中断的睡眠状态,然后当前进程就让出cpu,进入睡眠,直到有其他进程调用wake_up或者有中断信号进来唤醒本进程,它才会去执行接下来的代码。

如果进程被唤醒后,首先检查是否有事件产生,或者是否出现超时还是被其他信号唤醒的。如果出现这些情况,就跳出循环,将当前进程从ep-wp的等待队列里面移除,并且将当前进程设置为TASK_RUNNING就绪状态。

如果真的有事件产生,就调用ep_send_events函数,将events事件转移到用户空间里面。

sys_epoll_wait - ep_poll - ep_send_events:

ep_send_events没有什么工作,真正的工作是在ep_scan_ready_list函数里面:

sys_epoll_wait - ep_poll - ep_send_events - ep_scan_ready_list:

ep_scan_ready_list首先将ep就绪链表里面的数据链接到一个全局的txlist里面,然后清空ep的就绪链表,同时还将ep的ovflist链表设置为NULL,ovflist是用单链表,是一个接受就绪事件的备份链表,当内核进程将事件从内核拷贝到用户空间时,这段时间目标文件可能会产生新的事件,这个时候,就需要将新的时间链入到ovlist里面。

仅接着,调用sproc回调函数(这里将调用ep_send_events_proc函数)将事件数据从内核拷贝到用户空间。

sys_epoll_wait - ep_poll - ep_send_events - ep_scan_ready_list - ep_send_events_proc:

ep_send_events_proc回调函数循环获取监听项的事件数据,对每个监听项,调用ep_item_poll获取监听到的目标文件的事件,如果获取到事件,就调用__put_user函数将数据拷贝到用户空间。

回到ep_scan_ready_list函数,上面说到,在sproc回调函数执行期间,目标文件可能会产生新的事件链入ovlist链表里面,所以,在回调结束后,需要重新将ovlist链表里面的事件添加到rdllist就绪事件链表里面。

同时在最后,如果rdlist不为空(表示是否有就绪事件),并且由进程等待该事件,就调用wake_up_locked再一次唤醒内核进程处理事件的到达(流程跟前面一样,也就是将事件拷贝到用户空间)。

到这,epoll_wait的流程是结束了,但是有一个问题,就是前面提到的进程调用epoll_wait后会睡眠,但是这个进程什么时候被唤醒呢?在调用epoll_ctl为目标文件注册监听项时,对目标文件的监听项注册一个ep_ptable_queue_proc回调函数,ep_ptable_queue_proc回调函数将进程添加到目标文件的wakeup链表里面,并且注册ep_poll_callbak回调,当目标文件产生事件时,ep_poll_callbak回调就去唤醒等待队列里面的进程。

总结一下epoll该函数: epoll_wait函数会使调用它的进程进入睡眠(timeout为0时除外),如果有监听的事件产生,该进程就被唤醒,同时将事件从内核里面拷贝到用户空间返回给该进程。

如何编译linux源代码

首先uname -r看一下你当前的linux内核版本

1、linux的源码是在/usr/src这个目录下,此目录有你电脑上各个版本的linux内核源代码,用uname -r命令可以查看你当前使用的是哪套内核,你把你下载的内核源码也保存到这个目录之下。

2、配置内核 make menuconfig,根据你的需要来进行选择,设置完保存之后会在当前目录下生成.config配置文件,以后的编译会根据这个来有选择的编译。

3、编译,依次执行make、make bzImage、make modules、make modules

4、安装,make install

5、.创建系统启动映像,到 /boot 目录下,执行 mkinitramfs -o initrd.img-2.6.36 2.6.36

6、修改启动项,因为你在启动的时候会出现多个内核供你选择,此事要选择你刚编译的那个版本,如果你的电脑没有等待时间,就会进入默认的,默认的那个取决于 /boot/grub/grub.cfg 文件的设置,找到if [ "${linux_gfx_mode}" != "text" ]这行,他的第一个就是你默认启动的那个内核,如果你刚编译的内核是在下面,就把代表这个内核的几行代码移到第一位如:

menuentry 'Ubuntu, with Linux 3.2.0-35-generic' --class ubuntu --class gnu-linux --class gnu --class os {

recordfail

gfxmode $linux_gfx_mode

insmod gzio

insmod part_msdos

insmod ext2

set root='(hd0,msdos1)'

search --no-floppy --fs-uuid --set=root 9961c170-2566-41ac-8155-18f231c1bea5

linux/boot/vmlinuz-3.2.0-35-generic root=UUID=9961c170-2566-41ac-8155-18f231c1bea5 ro quiet splash $vt_handoff

initrd/boot/initrd.img-3.2.0-35-generic

}

当然你也可以修改 set default="0"来决定用哪个,看看你的内核在第几位,default就填几,不过我用过这种方法,貌似不好用。

重启过后你编译的内核源码就成功地运行了,如果出现问题,比如鼠标不能用,usb不识别等问题就好好查查你的make menuconfig这一步,改好后就万事ok了。

最后再用uname -r看看你的linux内核版本。是不是你刚下的那个呢!有没有成就感?

linux内核源码逐句讲解的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于深入分析linux内核源代码、linux内核源码逐句讲解的信息别忘了在本站进行查找喔。

1、本网站名称:源码村资源网
2、本站永久网址:https://www.yuanmacun.com
3、本网站的文章部分内容可能来源于网络,仅供大家学习与参考,如有侵权,请联系站长进行删除处理。
4、本站一切资源不代表本站立场,并不代表本站赞同其观点和对其真实性负责。
5、本站一律禁止以任何方式发布或转载任何违法的相关信息,访客发现请向站长举报
6、本站资源大多存储在云盘,如发现链接失效,请联系我们我们会第一时间更新。
源码村资源网 » linux内核源码逐句讲解(深入分析linux内核源代码)
您需要 登录账户 后才能发表评论

发表评论

欢迎 访客 发表评论